Why we shouldn’t fault Lucas and Penrose for continuing to believe in the Gödelian argument against computationalism

&

how we should, instead, use Gödel’s reasoning to define logical satisfaction, logical truth, logical soundness, and logical completeness verifiably, and unarguably

Bhupinder Singh Anand

The only fault we can fairly lay at Lucas’ and Penrose’s doors, for continuing to believe in the essential soundness of the Gödelian argument, is their naïve faith in, first, non-verifiable assertions in standard expositions of classical theory, and, second, in Gödel’s unvalidated interpretation of his own formal reasoning. We show why their faith is misplaced in both instances.

1. Introduction

Although most reasoned critiques (such as, for instance, [Bo90], [Br00], [Da93], [Fe96], [La98], [Le69], [Le89], [Pu95]) of Lucas’ and Penrose’s arguments against computationalism are unassailable, they do not satisfactorily explain why Lucas and

2 The author is an independent scholar. E-mail: re@alixcomsi.com; anandb@vsnl.com. Postal address: 32, Agarwal House, D Road, Churchgate, Mumbai - 400 020, INDIA. Tel: +91 (22) 2281 3353. Fax: +91 (22) 2209 5091.
Penrose - reasonable men, both - remain convinced of the essential soundness of their own arguments ([Lu96], [Pe96]).

A less technically critical review of their arguments is, indeed, necessary to appreciate the reasonability of their belief. It stems from the fact that, on the one hand, Lucas and Penrose have, unquestioningly, put faith in, and followed, standard expositions of classical theory in overlooking what Gödel has actually proved in Theorem VI ([Go31], p24) of his seminal 1931 paper [Go31] on formally undecidable arithmetical propositions; on the other, they have, similarly, put faith in, and uncritically accepted as definitive, Gödel’s own, informal and unvalidated, interpretation of the implications of this Theorem ([Go31], p27).

They should not be taken to task on either count for their faith; it is the standard expositions of Gödel’s reasoning on which they rely that remain studiously, and ambiguously, silent on both issues.

In this paper, we show that such ambiguity and silence has been, and continues to be, both, misleading and unnecessary. We show, specifically, that in [Go31], Gödel has - albeit implicitly\(^3\), and perhaps unwittingly and unknowingly – paved the way towards defining the logical satisfaction and logical truth of the formulas of an Arithmetic, the logical soundness of the Arithmetic itself, and the logical completeness of the Arithmetic, in an effective and verifiable manner within the Arithmetic.

Why the definitions have not been explicitly recognised by, both, Gödel (at least in [Go65]), and standard expositions of his reasoning (such as, for instance, [Be59], [Bo03],

\(^3\)“The method of proof which has just been explained can obviously be applied to every formal system which, first, possesses sufficient means of expression when interpreted according to its meaning to define the concepts (especially the concept “provable formula”) occurring in the above argument; and, secondly, in which every provable formula is true. In the precise execution of the proof, which now follows, we shall have the task (among others) of replacing the second of the assumptions just mentioned by a purely formal and much weaker assumption.” ([Go31], p9)
[Ch98], [Da93], [Fe96], [Me64], [R087], [Ro36], [Ro39], [Sh67], [Sm92], [Wa64]) is a mystery.

The question we need to ask is, however: How differently would we view Gödel’s reasoning, and its consequences, had Gödel defined *logical satisfiability, logical truth, logical soundness* and *logical completeness* explicitly as below.

2. Can verifiable *logical truth* be formalised in Peano Arithmetic?

Now, standard expositions of Tarski’s Theorem [Ta36] - to the effect that the set of Gödel numbers of the formulas of any first-order Peano Arithmetic, which are *intuitively true* in the standard model⁴ of the Arithmetic, is not arithmetical - appear to implicitly suggest that a verifiable ‘*logical truth*’ of the formulas of standard Peano Arithmetic, under an interpretation, cannot be formalised in the Arithmetic.

Accepting this, seeming, implication unquestioningly, Lucas and Penrose use it explicitly as an arguable cornerstone of the Gödelian argument⁵ [Lu61][Pe90][Pe94].

⁴ We define the “standard interpretation” of first-order Peano Arithmetic, PA, as (cf. [Me64], p107):

“... the interpretation in which

(a) the set of non-negative integers is the domain,

(b) the integer 0 is the interpretation of the symbol 0,

(c) the successor operation (addition of 1) is the interpretation of the ‘ function (i.e., of f_1),

(d) ordinary addition and multiplication are the interpretations of + and .,

(e) the interpretation of the predicate letter = is the identity relation.”

In other words, the interpreted, arithmetical, relation $R(x)$ is obtained from the formula $[R(x)]$ of PA by replacing every primitive, undefined, symbol of PA in the formula $[R(x)]$ by an intuitively interpreted mathematical symbol (i.e. a symbol that is a shorthand notation for some, semantically well-defined, concept of classical mathematics) as in (a)-(e).

⁵ Since it is not germane to the purely logical issue sought to be raised here, we shall not concern ourselves with the specific content, arguments and objections to the Gödelian argument.
However, the crucial point provable by Gödel’s reasoning in [Go31], but one whose significance has been overlooked, both, by him as well as by standard expositions of his reasoning, is that such a conclusion is not just arguable - it is false.

3. Tarski’s definitions of satisfiability and truth

Now, the standard definitions of the satisfiability, and truth, of the formulas of a formal language, say L, under a well-defined interpretation\(^6\), say M, are due to Tarski [Ta36].

Thus, a formula\(^7\) \([R(x)]\) of L is defined as satisfied under M if, and only if, its corresponding interpretation, say \(R^*(x)\), holds\(^8\) in M for any assignment of a value \(s\) that lies within the range of the variable \(x\) in M.

\(^6\) The word “interpretation” may be used both in its familiar, linguistic, sense, and in a mathematically precise sense; the appropriate meaning is usually obvious from the context. Mathematically, we follow the following definition ([Me64], §2, p49):

“An interpretation consists of a non-empty set \(D\), called the domain of the interpretation, and an assignment to each predicate letter \(A_j^n\) of an \(n\)-place relation in \(D\), to each function letter \(f_j^n\) of an \(n\)-place operation in \(D\) (i.e., a function from \(D^n\) into \(D\)), and to each individual constant \(a_i\) of some fixed element of \(D\). Given such an interpretation, variables are thought of as ranging over the set \(D\), and \(\sim, \Rightarrow\), and quantifiers are given their usual meaning. (Remember that an \(n\)-place relation in \(D\) can be thought of as a subset of \(D^n\), the set of all \(n\)-tuples of elements of \(D\).)”

We note that the interpreted arithmetical relation, \(R(x)\), in the standard model \(M\) of a Peano arithmetic, \(P\), is obtained from the formula \([R(x)]\) of the formal system \(P\) by replacing every primitive, undefined symbol of \(P\) in the formula \([R(x)]\) by an interpreted mathematical symbol (i.e. a symbol that is a shorthand notation for some, semantically well-defined, concept of classical mathematics). So the P-formula \([(Ax)R(x)]\) interprets as the sentence \((Ax)R(x)\), and the P-formula \([\neg(Ax)R(x)]\) as the sentence \(\neg(Ax)R(x)\).

We also note that the meta-assertions “\([(Ax)R(x)]\) is a true sentence under the interpretation \(M\) of \(P^*\),” and “\((Ax)R(x)\) is a true sentence of the interpretation \(M\) of \(P^*\),” are equivalent to the meta-assertion “\(R(x)\) is satisfied for any given value of \(x\) in the domain of the interpretation \(M\) of \(P\)” ([Me64], p51).

\(^7\) We use square brackets to indicate that the expression within the brackets is to be treated as a syntactic string of formal symbols only, devoid of any semantic content.

\(^8\) Tarski’s definitions are mathematically significant only if we assume that, given any \(s\) in \(M\), we can effectively determine that \(R^*(s)\) holds instantiationally in \(M\). Where \(M\) is an intuitive interpretation, such determination is sought to be postulated by the Church and Turing Theses, albeit, algorithmically. In Appendix 1 we argue that there is no justification for such strong postulation, and that it needs to be weakened to instantiational determination only - the minimum requirement of Tarski’s definitions.
The formula \([\forall x R(x)]\) of L is, then, defined as *true* under the interpretation M if, and only if, \([R(x)]\) is *satisfied* under M.

Moreover, the formula \([\neg(\forall x)R(x)]\) of L is, further, defined as *true* under the interpretation M if, and only if, \([\forall x R(x)]\) is *not true* under M.

Clearly, mathematical *satisfaction* and *truth* are, thus, defined relative only to an interpretation.

The Gödelian argument, quite reasonably, therefore, attempts to draw philosophical conclusions from the meta-logical status of the *intuitive satisfaction* and *intuitive truth* given in mathematical reasoning to the formulas of Peano Arithmetic under its standard, *intuitive*, interpretation.

4. **Definition of verifiable logical satisfaction and logical truth**

However, if we take M to be an interpretation of L in L itself, then we have the, classically overlooked, formalisation of the concepts of verifiable, and unarguable, *logical satisfaction*, and *logical truth*, of the formulas \([R(x)]\) and \([\forall x R(x)]\) of L, respectively, in L, as:

The formula \([R(x)]\) of L is defined as *logically satisfied* under L if, and only if \([R(s)]\) is *provable*\(^9\) in L for any term \([s]\) that can be substituted for the variable \([x]\) in \([R(x)]\).

The formula \([\forall x R(x)]\) of L is *logically true* in L if, and only if, \([R(s)]\) is *logically satisfied* in L.

\(^9\) Gödel has shown in [Go31] that the concept of ‘provability’ can be defined constructively, and in a verifiable manner, in recursively defined languages by means of primitive recursive functions and relations.
5. Definition of verifiable logical soundness

If we, further, define logical soundness as the property that the axioms of a theory are satisfied in the theory itself, and that the rules of inference preserve logical truth, then, it follows that the theorems of any logically sound theory are logically true in the theory.

It is straightforward to verify that first-order Peano Arithmetic is, indeed, logically sound.

6. Gödelian propositions

Now, even if the formula \((Ax)R(x)\) is not provable in L, it would be logically true in L if, and only if, the formula \([R(s)]\) is always provable in L for every well-defined term \([s]\) of L that can be substituted for \([x]\) in \([R(x)]\).

An instance of such a ‘Gödelian’ proposition is, precisely, what Gödel has proven in his Theorem VI ([Go31], p24) for Peano Arithmetic\(^{10}\) - by constructing a formula, \([(Ax)R(x)]\)\(^{11}\), of PA that is, itself, unprovable in PA, even though, for any given numeral \([n]\), \([R(n)]\) is provable in PA.

So, Gödel has actually constructed a formally unprovable Arithmetical formula that is not only intuitively true in the standard, intuitive, interpretation of the Arithmetic, but one which is also logically true in the Arithmetic in a verifiable, and intuitionistically unobjectionable, manner that leaves no room for dispute as to its ‘truth’ status.

Moreover, since the Arithmetic can be shown to be logically sound - again in a verifiable, and intuitionistically unobjectionable, manner - standard expositions of Gödel’s meta-

\(^{10}\) Although Gödel’s arguments were developed in an explicitly defined formal system P of Arithmetic based on Dedekind’s formulation of the Peano Axioms, they hold also for standard first-order Peano Arithmetic.

\(^{11}\) Here, \([R(x)]\) is the PA formula whose Gödel-number corresponds to ‘r’ in Gödel’s original proof of his Theorem VI (cf. [Go31], p25, dfn. (12)).
reasoning no longer need appeal to the (arguable) assumption that the Arithmetic is
\emph{intuitively sound} under the standard interpretation12.

Prima facie, removing the debatable elements of \emph{intuitive soundness} and \emph{intuitive truth}
from the Gödelian argument - which is built around the above construction - and
replacing them with verifiable definitions of \emph{logical soundness}, \emph{logical satisfaction}, and
\emph{logical truth}, should help place the argument against computationalism in better
perspective.

\textbf{7. Standard expositions should appeal to verifiable \emph{logical satisfaction}
and \emph{logical truth}, not to \emph{intuitive truth}}

However, standard expositions of Gödel’s reasoning - including Gödel’s own - continue
to overlook such verifiable, and intuitionistically unobjectionable, formalisations of the
concepts of the \emph{logical satisfaction}, and the \emph{logical truth}, of the formulas of Peano
Arithmetic in the Arithmetic itself.

Instead, they admit - into the foundations of first-order Peano Arithmetic - concepts of
unverifiable (hence arguable) \emph{intuitive satisfaction}, and \emph{intuitive truth} that are only
Platonically conceivable in individual, \emph{intuitive}, ‘standard’ interpretations of the
Arithmetic.

Surely Lucas and Penrose should not be faulted for treating this as a necessary, and
definitive, omission, and for continuing to believe in the essential soundness of the
Platonic, individual, \emph{intuitive} interpretations, and consequences, of their own reasoning!

12 “The system F is said to be \emph{sound} for a class S of sentences if whenever F proves \(\varphi\) with \(\varphi\) in S then \(\varphi\) is
\emph{true} in the structure N of natural numbers” [Fe96].
8. There are no non-trivial non-standard models of first order Peano Arithmetic

The significance of defining logical satisfaction, logical truth, logical soundness, and logical completeness, verifiably, may be far-reaching (see also Appendix C).

For instance, standard expositions of Gödel’s reasoning seem to derive legitimacy for the existence of non-trivial\(^\text{13}\), non-standard, models of Peano Arithmetic only from Gödel’s unvalidated assertion\(^\text{14}\) - at the end of his proof of Theorem VI ([Go31], p27) - which implicitly implies that, if \([(A\forall x)R(x)]\) is a Gödelian proposition of PA, then the axiomatic addition of \(!-(A\forall x)R(x)\) to PA will, first, not invite inconsistency, and, second, will yield a formal system, \(PA+!-(A\forall x)R(x)\), with a non-trivial, non-standard, model, say \(M'\), of first-order Peano Arithmetic in which \(!R(s)\) holds for some \(s\) in the domain of \(M'\) that is not a natural number.

However, this, again, is demonstrably false, if we require, reasonably, that consistency demand the extended theory remain logically sound in a verifiable manner.

For, by the above application of Tarski’’s definitions to PA itself, it would falsely imply that:

Since \(!-(A\forall x)R(x)\) is provable in \(PA+!-(A\forall x)R(x)\), it is logically true in \(PA+!-(A\forall x)R(x)\); hence \([(A\forall x)R(x)]\) is logically false in \(PA+!-(A\forall x)R(x)\), and so \([R(n)]\) is not provable for every numeral \([n]\) in \(PA+!-(A\forall x)R(x)\).

\(^\text{13}\) We can define a trivial, non-standard, model of Peano Arithmetic as one obtained by adding to it, for example, a new individual constant \([b]\), and corresponding axioms such as \([b] \neq [0], [b] \neq [1], [b] \neq [2], \ldots, [b] \neq [n], \ldots\) (cf. [Me64], p117).

\(^\text{14}\) “If one adjoins Neg\((17\text{Gen}_r)\) to \(\kappa\), then one obtains a consistent, but not an \(\omega\)-consistent, class of FORMULAS \(\kappa'\). \(\kappa'\) is consistent, for, otherwise, \(17\text{Gen}_r\) would be \(\kappa\)-provable. \(\kappa'\) is however not \(\omega\)-consistent, for, by virtue of \(!\text{Bew}_\kappa(17\text{Gen}_r)\) and (15), we have \((\exists x)\text{Bew}_\kappa\text{Sb}(r17\text{I}Z(x))\). On the other hand, of course, \(\text{Bew}_\kappa[\text{Neg}(17\text{Gen}_r)]\) holds.”
Clearly, PA+[¬(Ax)R(x)] is not *logically sound*. We cannot, therefore, assume - as Gödel does - that it must be consistent if PA is consistent.

9. Intuitive truth admits arguable Platonic conclusions

So, perhaps, one should not be too harsh on the, mathematically questionable, philosophical conclusions that Penrose and Lucas draw from the assertion - implicitly endorsable by standard expositions of Gödel's reasoning - that [Lu96]:

… in the case of First-order Peano Arithmetic there are Gödelian formulae (many, in fact infinitely many, one for each system of coding) which are not assigned truth-values by the rules of the system, and which could therefore be assigned either TRUE or FALSE, each such assignment yielding a logically possible, consistent system. These systems are random vaunts, all satisfying the core description of Peano Arithmetic.

10. Conclusions

What we have highlighted, above, is that the Gödelian argument draws sustenance from the fact that standard expositions of Gödel’s reasoning appeal to the *intuitive satisfaction* and *intuitive truth* of the formulas of Peano Arithmetic, and the *intuitive soundness* of the Arithmetic, under an *intuitive* (hence arguable) standard interpretation; the concepts are not defined explicitly in an effectively verifiable manner.

We have shown that this ambiguous appeal, however, is easily avoided by using Gödel’s reasoning to define the concepts of *logical satisfaction*, *logical truth*, and *logical soundness* in an effectively verifiable manner.

Moreover, if we define an Arithmetic as *logically complete* if, and only if, every *logically true* formula is provable in the Arithmetic, and require, further, that the *provable
formulas of a language must be logically sound, then we have the - arguably more illuminating - interpretation of Gödel’s reasoning as the assertion that Peano Arithmetic is not only intuitively incomplete - as asserted by, both, Gödel and standard expositions of his reasoning - but that it is also logically incomplete.

Further, unlike the standard expositions of Gödelian incompleteness, which are rooted in the concept of an intuitive, hence arguable, truth in the standard model of Peano Arithmetic, logical incompleteness is not susceptible to the Gödelian argument.

Appendix A: Commentary on mathematical objects and mathematical truth

The underlying issue, here, seems to be whether we can arrive at a common consensus with Lucas and Penrose on how we are to treat the terms ‘mathematics’ and ‘computation’.

If we can begin by agreeing that, by ‘mathematics’, we mean the set of languages that we construct in our attempts to externally symbolize those of our abstract mental concepts which may be amenable to precise expression, and unambiguous and effective communication, then the remaining issue is simply that of finding a mutually acceptable definition of ‘computation’.

Now, there seems to be a curious, common, reluctance to highlight the fact that there are well-defined mathematical functions and relations that, classically, have been accepted as effectively computable / decidable, yet which are treated as ‘uncomputable / undecidable’ in current expositions of classical theory!

For instance, Dedekind’s definition of a real number in terms of cuts, and the equivalent definition in terms of Cauchy sequences are, both, effectively computable / decidable.
This is why Chaitin [Ch98] can claim that his Omegas define real numbers (assuming that the definitions are valid), since any digit of a given definition of an Omega can be effectively computed mechanically. However, there is no single algorithm that can effectively decide the value of any digit of a given Omega.

A.1 Well-defined functions can be effectively computable instantiationaly, but not algorithmically

The straightforward way of expressing this phenomenon should be to say that there are well-defined real numbers that are instantiationally computable, but not algorithmically computable.

So why is this terminology uncomfortable for current expositions of classical theory, and why should the Omegas, amongst other, similarly definable, functions be termed as ‘uncomputable’ even in Computability Theory15?

A.2 We use the term ‘exists’ ambiguously

The deeper issue here seems to be that, when using language to express the abstract objects (elements) of our individual, and common, mental ‘concept spaces’, we use the word ‘exists’ loosely in three senses, without making explicit distinctions between them.

First, we may mean that an individually conceivable object exists formally within a language L if it lies within the formally-defined range of the variables of L.

15 “After all, although no Turing machine computes the function \(d \), we were able to compute at least its first few values, For since, as we have noted, \(f_1 = f_1 = f_1 \) = the empty function we have \(d(1) = d(2) = d(3) = 1 \). And it may seem that we can actually compute \(d(n) \) for any positive integer \(n \) - if we don’t run out of time.” ([Bo02], Ch. 4, Uncomputability, p37)
The existence of such objects is necessarily derived from the grammar and rules of construction of the appropriate constant terms of the language - generally finitary in recursively defined languages - and can be termed as constructive in L by definition.

Second, we may mean that an individually conceivable object exists formally under a formal interpretation of L in another formal language, say L', if it lies within the formally-defined range of a variable of L under the interpretation.

Again, the existence of such an object in L' is necessarily derivable from the grammar and rules of construction of the appropriate constant terms of L', and can be termed as constructive in L' by definition.

Third, we may mean that an individually conceivable object exists intuitively, in an interpretation M of L, if it lies within the range of an interpreted variable of L, where M is a Platonic interpretation of L in an individual’s subjective mental conception (à la Brouwer).

Clearly, the debatable issue is the third case.

A.3 Can we correlate diverse, individually conceivable, interpretations unambiguously?

So the question is whether we can - and, if so, how we may - correspond the intuitive, Platonically conceivable, objects of various individual interpretations of L, say M, M', M", ..., unambiguously to the mathematical objects that are formally definable as the constant terms of L.

If we can achieve this, we can, then, attempt to relate L to a common external world, and try to communicate effectively about our individual mental concepts of the world that we accept as lying, by consensus, in a common, Platonic, ‘concept space’.
A.4 The central role of the standard *intuitive* interpretation of first-order Peano Arithmetic in current expositions of classical theory

For mathematical languages, such an intuitionistically unobjectionable, common, ‘concept space’, is, implicitly, accepted as the set of individual, *intuitive*, Platonically conceivable, perceptions - M', M", M"', ... - of the formal definition of the standard, *intuitive*, interpretation, say M, of Dedekind’s formulation of the Peano Axioms.

Reasonably, if we intend a language, or a set of languages, to be adequate, first, for the expression of the abstract concepts of an individual consciousness, and, second, for the unambiguous and effective communication of those of such concepts that we can accept as lying within our common concept space, then we need to give effective guidelines for determining the, Platonically conceivable, mathematical objects of an individual perception of M that we can agree upon, by common consensus, as corresponding to the constants (mathematical objects) that are formally definable within the language.

A.5 The role of Church’s and Turing’s Theses in legitimising the standard interpretation

Now, in the case of mathematical languages in standard expositions of classical theory, this role is sought to be filled by the Church and Turing Theses. Their standard formulations postulate that every effectively computable number-theoretic function (or relation, treated as a Boolean function) of M is partial recursive / Turing-computable.

However, curiously, even Computability Theory is reluctant to note that these Theses do not succeed in their objective completely.

Thus, even if we accept the standard formulations of the Theses, we still cannot conclude that we have specified explicitly that the domain of M consists of only constructive
mathematical objects that can be represented in the most basic of our formal mathematical languages, namely, first-order Peano Arithmetic and Recursive Arithmetic.

A.6 The standard formulation of CT violates the principle of Occam’s razor

The reason seems to be that the Church and Turing Theses - CT for short - are postulated as strong identities\(^{16}\), which, prima facie, go beyond the minimum requirements for the correspondence between the, Platonically conceivable, mathematical objects of M and those of PA and Recursive Arithmetic.

This violation of the principle of Occam’s Razor is highlighted if we note that every recursive function (or relation) is not identical to a unique arithmetical function (or relation), but only instantiationally equivalent to an infinity of arithmetical functions (or relations)\(^{17}\).

Thus, the standard form of CT only postulates as constructive the algorithmically computable number-theoretic functions of M.

It leaves open the question of the significance that we are to permit to the individual, Platonically conceivable, non-constructive, elements of M.

It also obscures the issue of whether there are constructive, instantiationally computable but algorithmically uncomputable, number-theoretic functions and relations (see Appendix B).

\(^{16}\) For instance, in [Ch36], Church writes: “We now define the notion, already discussed, of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers.”

Correspondingly, Turing notes, in [Tu36], that: “The theorem that all effectively calculable sequences are computable and its converse are proved below in outline”.

\(^{17}\) See Theorem VII in [Go31].
A.7 Standard expositions of classical theory are restrictive because they identify effective computability with algorithmic computability

Thus, standard expositions of classical theory imply - albeit implicitly - that only algorithmically computable functions (and relations) can be termed as constructive.

It is the tacit acceptance of this implicit implication that prevents, for instance, a constructive definition of what we are individually able to conceive as a random real number - one whose digits are instantiationally computable effectively, but which are not computable algorithmically (such as, for instance, Chaitin's Omegas, assuming that they are, indeed, well-defined real numbers).

A.8 We can define arithmetical truth effectively

Now, such implicit implication can be avoided by explicitly recognising that there are well-defined mathematically expressible functions (and relations) which can, intuitively, be termed as effectively computable / decidable instantiationally (i.e., in any given instance, by some mechanical method that depends on the given instance), even though they are not computable / decidable algorithmically (i.e., by a common mechanical method that applies to every given instance).

Recognition of this immediately allows us to define logical truth effectively (at least for Peano Arithmetic, as outlined earlier), under Tarski’s definitions of the satisfiability and truth of the formal expressions of a language under a well-defined interpretation - despite the perceived limitations of Gödel’s ‘Incompleteness’ Theorems, Tarski’s Theorem that the set of Gödel numbers of true arithmetical statements is not arithmetical, Turing’s Halting Theorem, and Cantor’s diagonal argument.
A.9 Gödel’s ‘Incompleteness’ Theorems, Tarski’s Theorem, Turing’s Halting Theorem, and Cantor’s diagonal argument in perspective.

For instance, the reason there is a formally unprovable expression of Peano Arithmetic that, under the standard interpretation of the language, translates, both, as intuitively, and as logically, true - under Tarski’s definitions of the satisfiability and truth of such expressions under an interpretation - simply means that even standard formulations of Tarski’s definitions admit the possibility of arithmetical relations as true that are instantiationally, but not algorithmically, true for any given set of natural number values in the interpretation, whereas a provable expression of PA necessarily translates as a relation that is algorithmically decidable as true in the interpretation.

So, Gödel’s unprovable, but intuitively true, arithmetical relation may simply be one that is effectively decidable as logically true in every instance (which Gödel has proved), but which may not be algorithmically decidable as logically true (a point that does not seem to have been considered explicitly in current expositions of classical theory).

This, in essence, would be a reasonable interpretation of Tarski’s Theorem - that there are arithmetical relations that are effectively decidable instantiationally, but not algorithmically.

Further, since we can define an arithmetical relation as effectively decidable instantiationally if, and only if, each instance of it were provable in Peano Arithmetic, it would be more illuminating to say that Peano Arithmetic can be termed as instantiationally complete, but not algorithmically complete.

Similarly, Turing’s Halting Theorem (as also Cantor’s diagonal construction) can be interpreted as asserting that there are well-defined number-theoretic functions (real numbers) that are effectively computable instantiationally, but not algorithmically.
A.10 Consequences of strengthening the weakened forms of CT with a plausible arithmetical Provability Thesis

Moreover, under an intuitionistically unobjectionable - and plausible - Provability Thesis (to the effect that a total arithmetical relation is PA-provable if, and only if, it is algorithmically decidable), we can define an architecture for a trio of Turing machines such that it can define a total number-theoretic function that is effectively computable instantiationally, but not algorithmically\(^\text{18}\).

Obviously, acceptance of such a Thesis as intuitionistically unobjectionable implies that the standard forms of the Church and Turing Theses need to be weakened to equivalences.

It also implies that there are no non-trivial, non-standard, models of Peano Arithmetic, an immediate corollary of which is that P ≠ NP (Appendix C).

However, a more interesting benefit of weakening the Church and Turing Theses is that they, then, provide the equivalent instantiational, arithmetical, completeness - in first-order theory - that is provided in second-order Peano Arithmetic (which formalises our concepts of the natural numbers as expressed by Dedekind’s Peano Postulates) by the second-order Induction Axiom.

Such completeness would be of significance to the computational thesis - which Lucas and Penrose attempt to refute by the Gödelian argument - that all ‘mathematics’ is precisely captured by ‘computation’.

\(^{18}\) The author develops this argument further in various arXived, but unpublished, papers.
Appendix B: Why we may need to weaken the Church-Turing Thesis

The classical Church-Turing Thesis - expressed as a strong identity - is implicitly committed to the following, strong, definition of computability:

\[(i) \textbf{Def}:\] A number-theoretic function / relation (treated as a Boolean Function), say \(F(x_1, x_2, \ldots, x_n)\), is effectively computable strongly if, and only if, there is an effective method / (Markov) algorithm \(T\) such that, given any sequence of natural numbers \((a_1, a_2, \ldots, a_n)\), \(T\) will always compute \(F(a_1, a_2, \ldots, a_n)\).

Since a number-theoretic function is (Markov) algorithmically computable if, and only if, it is partial recursive, the following, classical, form of CT follows straightforwardly from \((i)\):

\[(ii) \textbf{Classical CT}:\] A number-theoretic function / relation is effectively computable if, and only if, it is partial recursive / Turing-computable.

The question arises: Is such a strong commitment necessary?

Interestingly, the question of whether \((ii)\) is a definition, a theorem, or a thesis, was the subject of a substantive exchange of views between Church and Gödel, neither of whom, apparently, was entirely comfortable with the necessity of postulating \((ii)\) either as a definition, or as a thesis.\(^{19}\)

\(^{19}\) Church proposed his definition of effective calculability at a meeting of the American Mathematical Society in New York City on April 19, 1935 [Ch35], where he presented an abstract of his paper [Ch36]. In the abstract he notes that:

“Following a suggestion of Herbrand, but modifying it in an important respect, Godel has proposed (in a set of lectures at Princeton, N. J., 1934) a definition of the term recursive function, in a very general sense. In this paper a definition of recursive function of positive integers which is essentially Godel’s is adopted. And it is maintained that the notion of an effectively calculable function of positive integers should be identified with that of a recursive function, since other plausible definitions of effective calculability turn out to yield notions which are either equivalent to or weaker than recursiveness.”
That their, possibly intuitive, discomfort was well-founded is seen if we replace (i) by the weaker, and broader²⁰:

That he felt the need to offer, albeit obliquely, a faint defence of his ‘definition’ is reflected in the main paper, where he writes ([Ch36], #7):

“We now define the notion, already discussed, of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers (or of λ-definability of positive integers). This definition is thought to be justified by the considerations which follow, so far as positive justification can ever be obtained for the selection of a formal definition to correspond to an intuitive notion.

It has already been pointed out that, for every function of positive integers which is effectively calculable in the sense just defined, there exists an algorithm for the calculation of its values.”

In a footnote ([Ch36], fn.18), he remarked that:

“The question of the relationship between effective calculability and recursiveness (which it is here proposed to answer by identifying the two notions) was raised by Gödel in conversation with the author.”

That the conversations were actually about serious misgivings as to the nature of this relationship was revealed by Church in a November 29, 1935, letter to Kleene (cf. [Da82]):

“In regard to Gödel and the notions of recursiveness and effective calculability, the history is the following.

In discussion [sic] with him the notion of λ-definability, it developed that there was no good definition of effective calculability. My proposal that λ-definability be taken as a definition of it he regarded as thoroughly unsatisfactory. I replied that if he would propose any definition of effective calculability which seemed even partially satisfactory I would undertake to prove that it was included in λ-definability. His only idea at the time was that it might be possible, in terms of effective calculability as an undefined notion, to state a set of axioms which would embody the generally accepted properties of this notion, and to do something on that basis. Evidently it occurred to him later that Herbrand’s definition of recursiveness, which has no regard to effective calculability, could be modified in the direction of effective calculability, and he made this proposal in his lectures. At that time he did specifically raise the question of the connection between recursiveness in this new sense and effective calculability, but said he did not think that the two ideas could be satisfactorily identified “except heuristically”.”

See also [Si96], where Wilfrid Sieg addresses some interesting issues concerning the development of Church’s views on effective calculability.

²⁰Curiously, according to Sieg [Si96], an (essentially) identical definition was actually proposed by Gödel as an ‘absolute’ notion of ‘effectively computable’ in [Go36], where a number theoretic function \(\varphi(x) \) was defined as computable - in the formal systems, S, considered by Gödel in the paper - just in case, for each numeral \(m \), there existed a numeral \(n \) such that \(\varphi(m) = n \) was provable in S.

Apparently, however, the significance of the broader, instantiational, nature of this definition, vis-à-vis the narrower, algorithmic, nature of Church’s proposed ‘definition’, of effective computability, was not evident at the time.

Gödel’s objection to Church’s proposed ‘definition’ could, perhaps, have been a reflection of an intuitive perception of a significant difference between his and Church’s notions of ‘effective calculability’.
(iii) Def: A number-theoretic function / relation, say $F(x_1, x_2, \ldots, x_n)$, is effectively computable weakly if, and only if, given any sequence of natural numbers (a_1, a_2, \ldots, a_n), there is an effective method T, which may depend on (a_1, a_2, \ldots, a_n), such that T will always compute $F(a_1, a_2, \ldots, a_n)$.

Clearly, strong effective computability (i) implies weak effective computability (iii). Hence, by the dictum of Occam's razor, (iii) is to be preferred as the definition of effective computability.

Moreover, the significance of (iii) over (i) is that it admits the broader possibility of number-theoretic functions / relations that are effectively computable instantiationally, but not algorithmically.

The significance, and necessity, of a thesis linking effective computability with recursivity / Turing-computability then emerges if we express CT as a weakened equivalence, rather than as a strong identity:

(iv) Instantiational CT: A number-theoretic function / relation is effectively computable if, and only if, it is instantiationally equivalent to a partial recursive / Turing-computable function / relation.

21 The possibility that there may be number-theoretic functions / relations that are effectively computable instantiationally, but not algorithmically, is also implicit in Gödel’s famous 1951 Gibbs lecture [Go51], where he remarks:

“I wish to point out that one may conjecture the truth of a universal proposition (for example, that I shall be able to verify a certain property for any integer given to me) and at the same time conjecture that no general proof for this fact exists. It is easy to imagine situations in which both these conjectures would be very well founded. For the first half of it, this would, for example, be the case if the proposition in question were some equation $F(n) = G(n)$ of two number-theoretical functions which could be verified up to very great numbers n.”

Such a possibility is also implicit in Turing’s remarks ([Tu36], §9, para II).

Gödel’s tacit recognition of this possibility may have been the underlying reason for his objection to Church’s proposed identification of the notion of effective calculability with recursiveness.
We can, then, admit number-theoretic functions / relations that are effectively computable *instantiationally*, but not *algorithmically*.

Are there any functions / relations that would justify (iv) intuitively?

Clearly, Turing's Halting function, and Chaitin's Omegas, are well-defined, total, number-theoretic functions that are effectively computable *instantiationally*, but not *algorithmically*.

However, in the absence of a thesis such as (iv), we cannot link them *instantiationally* to recursive / Turing-computable functions.

On the other hand, if \((Ax)R(x)\) is Gödel's undecidable arithmetical proposition, then, under the reasonable assumption that, if a total arithmetical relation is Turing-computable as true, then the algorithm can be converted into a proof sequence in Peano Arithmetic, it can be shown that the arithmetical relation, \(R(x)\), is effectively decidable *instantiationally*, but not *algorithmically*.

This case is significant since Gödel has shown ([Go31], p31, Theorem VII) that \(R(x)\) is, indeed, *instantiationally* equivalent to a primitive recursive relation - which, latter, is decidable *algorithmically* - without appeal to any form of CT!

Appendix C: If first-order Peano Arithmetic has no consistent non-trivial, non-standard, models, then P ≠ NP

P ≠ NP is the central open problem in complexity theory [Co00], one of whose formulations is the following [Ra02]:

"Is there a polynomial time algorithm A that gets as input a Boolean formula f and outputs 1 if and only if f is a tautology? P ≠ NP states that there is no such algorithm."
Now, Gödel has defined a formula, $[R(x)]$, such that:

(i) $[R(x)]$ is constructible in standard, first-order, Peano Arithmetic, PA;

(ii) we can prove, meta-mathematically, that $[R(x)]$ translates as an arithmetical tautology, $R(x)$, under the standard interpretation of the Arithmetic;

(iii) $[R(x)]$ is not provable in the Arithmetic.

The question arises: Is $R(x)$ Turing-decidable as TRUE?

If we assume, first, the thesis that every total arithmetical relation that is Turing-decidable as TRUE is PA-provable, then $R(x)$ is not Turing-decidable as TRUE, and, so, $P \neq NP$.

If we assume, however, that there is a total arithmetical relation that is Turing-decidable as TRUE, but which is not PA-provable, then this implies that there is a consistent, non-trivial, non-standard, model of PA, in which $[R(s)]$ is satisfied for some term $[s]$ of the interpretation that is not a natural number.

We conclude that, if PA has no consistent, non-trivial, non-standard models, then, under the above expression of the PvNP problem, $P \neq NP$.

References

Offprint available at http://kryten.mm.rpi.edu/refute.penrose.pdf

<http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf>

Web page: http://users.ox.ac.uk/~jrlucas/Godel/mmg.html

<Web page: http://users.ox.ac.uk/~jrlucas/Godel/turn.html>

<Web page: http://www.abelard.org/turpap2/tp2-ie.asp - index>