Why Hilbert's and Brouwer's interpretations of quantification are complementary and not contradictory

Bhupinder Singh Anand

Mumbai, India

Epsilon 2015

Workshop on Hilbert's Epsilon and Tau in Logic, Informatics and Linguistics

University of Montpellier, France

01: Aristotle's particularisation

We consider the thesis that there is an implicit ambiguity in interpreting quantification, whose roots trace back to the non-finitary assumption of:

- An 'unspecified' element
- In a fundamental tenet of Aristotle's logic of predicates.

Namely, the semantic postulation that:

- If it is not the case that, for any specified x, F(x) does not hold,
- Then there exists an unspecified x such that F(x) holds.

Where 'holds' is to be understood semantically in Tarski's implicit sense:

- That 'Snow is white' holds as a true assertion if, and only if,
- It can be objectively determined, on the basis of evidence, that snow is white.

02: The significance of Hilbert's ε -calculus

Now, Hilbert defined a formal logic L_{ϵ} , in which he sought to capture the essence of:

• Aristotle's 'unspecified' x as $[\varepsilon_x(F(x))]$.

Hilbert showed:

- That the universal and existential quantifiers can be defined formally in L_{ε} in terms of his ε -operator as follows:
 - $[(\forall x)F(x) \leftrightarrow F(\varepsilon_x(\neg F(x)))]$
 - $[(\exists x)F(x) \leftrightarrow F(\varepsilon_x(F(x)))]$
- ullet And that Aristotle's logic is a sound interpretation of the formal logic $L_{arepsilon}$
 - If $[\varepsilon_X(F(x))]$ can be semantically interpreted as postulating the existence of some 'unspecified' x satisfying F(x).

Definition

An interpretation (model) $\mathcal I$ of a formal language L, over a domain D, is sound relative to an assignment of truth values $T_{\mathcal I}$ to the formulas of L if, and only if, the axioms of L interpret as true, and the rules of inference of L preserve truth, over D under $\mathcal I$ relative to the assignment of truth values $T_{\mathcal I}$.

03: Hilbert's interpretation of quantification

Thus, Hilbert's interpretation of universal quantification—under any objective method T_H of assigning truth values to the sentences of a formal logic L—is that:

- The interpreted sentence $(\forall x)F(x)$ is defined as holding
 - If, and only if, F(a) holds whenever $\neg F(a)$ holds for some unspecified a;
 - Which implies that ¬F(a) does not hold for any unspecified a if L is consistent,
- And so $(\forall x)F(x)$ holds,
 - If, and only if, F(a) holds for any unspecified a.

Whilst Hilbert's interpretation of existential quantification is the postulation that:

- **The** sentence $(\exists x)F(x)$ holds,
 - If, and only if, F(a) holds for some unspecified a.

04: Brouwer's objection

Brouwer's objection to such an 'unspecified' interpretation of quantification was that:

- *For* an interpretation to be considered sound relative to T_H ,
- When the domain is infinite,
- Decidability
 - Under the interpretation
 - Must be constructively verifiable
 - In some intuitive, and mathematically acceptable, sense of the term 'constructive'.

05: Is Brouwer's objection relevant today

Two questions arise:

- Is Brouwer's objection relevant today?
- If so, can we interpret quantification 'constructively'?

06: The standard interpretation *M* of PA

The perspective we choose for addressing these issues is that of:

• *The* structure N of the natural numbers,

Which serves for a definition of today's:

- Standard interpretation M of the first-order Peano Arithmetic PA,
- Where we do not admit 'unspecified' natural numbers whilst defining quantification under M.

However, we are then faced with the ambiguity:

07: Distinguishing between For any and For all

- Is the PA-formula $[(\forall x)F(x)]^1$
 - **To** be interpreted constructively as: 'For any n, F(n)',
 - Which holds if, and only if,
 - For any specified natural number n,
 - There is algorithmic evidence that F(n) holds in \mathbb{N} ?
- Or is $[(\forall x)F(x)]$
 - **To** be interpreted finitarily as: 'For all n, F(n)',
 - Which holds if, and only if,
 - There is algorithmic evidence that,
 - For any specified natural number n, F(n) holds in \mathbb{N} ?

Where:

Definition

A natural number n is defined as specifiable in $\mathbb N$ if, and only if, it can be explicitly denoted as a PA-numeral by a PA-formula that interprets as an algorithmically computable^a constant in $\mathbb N$.

^aAs detailed in Definition 3.

¹ Square brackets identify and differentiate a formula from its interpretation.

08: The standard interpretation of quantification in PA

Keeping this distinction in mind, we note that:

- If $F^*(x)$ denotes in $\mathbb N$ the relation that interprets the PA-formula [F(x)] under todays standard interpretation M,
- And, if we assume that there is an objective method T_M of assigning truth values to the formulas of PA under M,
- Then, in the underlying first-order logic FOL of PA:
 - Which today favours evidence-based interpretation
 - Where we view the values of a simple functional language as specifying evidence for propositions in a constructive logic . . .

09: The standard interpretation of PA over №

It would seem that:

- (1a): The formula $[(\forall x)F(x)]$ is **defined** as true in **M**
 - Relative to the standard truth assignment T_M
 - If, and only if, for any n, $F^*(n)$ holds in M;
- *(1b)*: The formula $[(\exists x)F(x)]$ is an abbreviation of $[\neg(\forall x)\neg F(x)]$,
 - And is **defined** as true in M relative to T_M
 - If, and only if, it is not the case that, for any $n, \neg F^*(n)$ holds in M;
- (1c): The sentence $F^*(n)$ is **postulated** as holding in **M**
 - For some unspecified natural number n
 - If, and only if, it is not the case that,
 - For any n, $\neg F^*(n)$ holds in M.

If so, then (1a), (1b) and (1c) together interpret $[(\forall x)F(x)]$ and $[(\exists x)F(x)]$ under M as intended by Hilbert's ε -function, and attract Brouwer's objection.

This would, then, answer question (a).

10: The Law of the Excluded Middle and (1c)

Since definitions (1a) and (1b) are constructive:

- Our thesis is that the implicit target of Brouwer's objection is:
 - The semantic postulation (1c)²,
 - Which appeals to Platonically non-constructive,
 - Rather than intuitively constructive, plausibility.

We note that this conclusion about Brouwer's essential objection:

- Apparently differs from conventional intuitionistic wisdom,
- Which would implicitly deny appeal to (1c), in an interpretation of PA,
- **By** explicitly denying the FOL theorem $[P \ v \ \neg P]$ (Law of the Excluded Middle);
 - Even though denying appeal to (1c) in an interpretation of PA
 - **Does** not entail denying the FOL theorem $[P \ v \ \neg P]$.

 $^{^2}$ (1c): The sentence F(n) is implicitly postulated as holding in M for some unspecified natural number n if, and only if, it is not the case that, for any specified natural number n, we may conclude on the basis of evidence-based reasoning that F(n) does not hold in M.

11: Is PA interpretable without appeal to (1c)?

We therefore re-phrase question (b) more specifically:

- Can we define an interpretation of PA over N that does not appeal to the semantic postulation (1c)?
 - Where we do not postulate that the sentence F(n) holds in M for some unspecified natural number n if, and only if, it is not the case that, for any specified n, $\neg F(n)$ holds in M.

12: The interpretation \boldsymbol{B} of PA over $\mathbb N$

Now, we can, indeed, define another interpretation $\textbf{\textit{B}}$ of PA over \mathbb{N} , under which:

- (2a): The formula $[(\forall x)F(x)]$ is **defined** as true in **B**
 - Relative to a finitary truth assignment T_B
 - If, and only if, for all n, $F^*(n)$ holds in B;
- *(2b)*: The formula $[(\exists x)F(x)]$ is an abbreviation of $[\neg(\forall x)\neg F(x)]$,
 - And is defined as true in B relative to T_B
 - If, and only if, it is not the case that, for all $n, \neg F^*(n)$ holds in B.

13: **B** is a finitary interpretation of PA

We show that 3 B is a finitary interpretation of PA,

- Since all the theorems of first-order PA interpret as finitarily true in B relative to T_B;
- From which we conclude finitarily that PA—and ipso facto FOL—are consistent,
 - So we need not deny the Law of the Excluded Middle
 - In order to ensure a finitary interpretation of quantification
 - Under an interpretation of PA.

This answers question (b).

³ As detailed in Theorem 8

14: The interpretations **M** and **B** are complementary

So, if we admit both the constructive and finitary interpretations of the PA-formula $[(\forall x)F(x)]$ as logically unobjectionable:

• **Then** the two interpretations **M** and **B** of PA over the structure \mathbb{N}

• *Can* be viewed as complementary rather than contradictory.

15: Evidence-based reasoning

We note that the complementarity is rooted in Tarski's classic definitions:

- Which permit an intelligence,
 - Whether human
 - Or mechanistic,
- To admit,
 - Finitary,
 - Evidence-based,
 - Inductive
- Definitions
 - Of the satisfaction and truth
 - Of the atomic formulas of PA,
 - Over the domain N of the natural numbers,
- In two, essentially different, ways:
 - (a) In terms of constructive algorithmic verifiabilty; and
 - (b) In terms of finitary algorithmic computability.

16: Algorithmic verifiability

What this means is that:

- If $[(\forall x)F(x)]$ is to be interpreted constructively as 'For any x, $F^*(x)$ ',
- Then it must be consistently read as:

Definition

A PA-formula [F(x)] is algorithmically verifiable under an interpretation if, and only if, for any specified PA-term [n], there is a deterministic algorithm^a $AL_{(F,n)}$ which can provide objective evidence for deciding the truth or falsity of each formula in the finite sequence $[\{F(1), F(2), \ldots, F(n)\}]$ under the interpretation.

^aA deterministic algorithm computes a mathematical function which has a unique value for any input in its domain, and the algorithm is a process that produces this particular value as output.

17: Algorithmic computability

Whilst:

- If $[(\forall x)F(x)]$ is to be interpreted finitarily as 'For all x, $F^*(x)$ ',
- Then it must be consistently read as:

Definition

A PA-formula [F(x)] is algorithmically computable under an interpretation if, and only if, there is a deterministic algorithm AL_F that can provide objective evidence for deciding the truth or falsity of each formula in the denumerable sequence $[\{F(1), F(2), \ldots\}]$ under the interpretation.

18: Defining effective computability

Now, although both definitions can be termed 'constructive':

- And every algorithmically computable number-theoretic relation is algorithmically verifiable,
 - The converse is false.4

Theorem

There are number-theoretical relations that are algorithmically verifiable but not algorithmically computable.

An unintended significance of this is that the Church-Turing Thesis would not hold if we could define:

Definition

An arithmetical function is effectively computable if, and only if, it is algorithmically verifiable.

⁴ As detailed in Theorem 1.

19: Decidability under Tarski's inductive definitions

Concerning the decidability of PA-formulas under Tarski's definitions, we note that⁵:

- If the atomic formulas of PA
- Interpret under an interpretation as decidable over the domain \mathbb{N}
- With respect to an objective assignment of truth values
 - **Then** the Π_n and Σ_n formulas of PA
 - Must also interpret as decidable over N
 - With respect to the objective assignment of truth values.

⁵ As detailed in the Satisfaction Theorem 2.

20: The *standard* interpretation *M*

Now it follows from the objective assignment T_M of algorithmically verifiable truth values under M that:⁶

Theorem

The <u>atomic</u> formulas of PA are <u>algorithmically verifiable</u> as true or false under the standard interpretation **M**.

From which we further conclude that:

Theorem

The axioms of PA are algorithmically verifiable as true under the standard interpretation **M**, and the rules of inference of PA preserve the properties of algorithmically verifiable satisfaction and truth under **M**.

However, the interpretation **M** cannot claim to be finitary since:

• We cannot prove finitarily from Tarski's definitions and T_M whether, or not, a quantified PA formula $[(\forall x_i)R]$ is algorithmically verifiable as true under M.

⁶ As detailed in Theorem 4 and Theorem 5.

21: M proves PA consistent non-finitarily

We thus conclude that⁷:

Theorem

If the PA-theorems interpret as algorithmically verifiable truths under the standard interpretation **M**^a, then PA is consistent.

^a As implied by Gerhard Gentzen's transfinite argument for the consistency of PA.

- This suggests that the interpretation M of PA may be viewed as:
 - Circumscribing the ambit
 - Of non-finitary human reasoning,
 - About 'true' arithmetical propositions,
- If we see Aristotle's particularisation as:
 - A Platonic human-intelligence-specific inference,
 - That only a human-like intelligence can conceive of as holding,
 - *Under* the standard interpretation *M* of PA,
 - For deciding truth values in M under the assignment T_M .

⁷ As detailed in Theorem 6.

22: The interpretation **B**

Now it also follows from the objective assignment T_B of algorithmically computable truth values under **B** that:⁸

Lemma

The atomic formulas of PA are algorithmically computable as true or as false under the interpretation **B**.

From which we further conclude that:

Theorem

The axioms of PA are algorithmically computable as true under the interpretation **B**, and the rules of inference of PA preserve the properties of algorithmically computable satisfaction and truth under **B**.

⁸ As detailed in Theorem 7 and Theorem 8.

23: **B** proves PA consistent finitarily

We then show that:9

Theorem

A PA formula [F(x)] is PA-provable if, and only if, [F(x)] is algorithmically computable as true in \mathbb{N} ... Provability Theorem for PA.

Since PA-provability is finitary, the assignment T_B of algorithmically computable truth values under the interpretation \boldsymbol{B} is therefore finitarily decidable under Tarski's definitions.

Hence the PA-theorems interpret as finitary truths under **B**, and we have a finitary proof, without appeal to Aristotle's particularisation (1c), that:

Theorem

PA is consistent.

The finitary interpretation **B** may thus be viewed as:

- Circumscribing the ambit,
- Of finitary mechanistic reasoning
- About 'true' arithmetical propositions.

⁹ As detailed in Theorem 10 and Theorem 9.

24: Gödel's arithmetical proposition $[(\forall x)R(x)]$

We finally consider the status of 'unspecified' natural numbers, and their putative representation as PA-terms (numerals) under a rule of deduction such as Rosser's Rule C, where we note that Gödel has defined:

- An arithmetical proposition $[(\forall x)R(x)]$ which is not PA-provable,
- **Even** though [R(n)] is PA-provable for any specified PA-numeral [n],

Now, we conclude from the Provability Theorem for PA that:¹⁰

Corollary

In any model of PA, Gödel's arithmetical formula [R(x)] interprets as an algorithmically verifiable, but not algorithmically computable, relation over \mathbb{N} .

Corollary

The negation $[\neg(\forall x)R(x)]$ of Gödel's arithmetical proposition is provable in PA.

Corollary

PA is not ω -consistent.

25: PA can define only algorithmically computable natural numbers

So, since the negation $[\neg(\forall x)R(x)]$ of Gödel's arithmetical proposition is provable in PA, it admits the non-finitary conclusion:

- That there is an 'unspecified' natural number q,
 - For which the sentence $R^*(q)$ is false in \mathbb{N} under M,
 - **Even** though [R(n)] is PA-provable for any specified numeral [n];
- Which implies that the PA-numeral corresponding uniquely under a successor function to an unspecified natural number q:
 - Cannot be specified within any PA formula,
 - Even though q must lie in the domain N of the natural numbers
 - Which is defined completely by the semantics of Dedekind's second order Peano Postulates.
- This also means that we cannot use Rosser's Deduction Rule C within a PA-proof sequence, since it follows from the Provability Theorem for PA that:¹¹

Theorem

A PA formula can only contain algorithmically computable terms.

As detailed in Theorem 11.

26: Resolving the Poincaré-Hilbert debate

We conclude this overview by noting that:

- The complementarity suggested by the preceding perspective
- Can also be viewed as resolving the Poincaré-Hilbert debate in Hilbert's favour.

27: Interpretation *M* invalidates Poincaré's argument

Reason: Since the axioms of PA are algorithmically verifiable as true under the standard interpretation M^{12} ,

• They invalidate Poincaré's argument, if we take this to mean that:

Poincaré

- The PA Axiom Schema of Finite Induction
- Cannot be justified
- *Under* the standard interpretation *M* of PA,
- As any such argument would necessarily
- Need to appeal to some form of infinite induction.

¹² As detailed in Theorem 5

28: Interpretation **B** validates Hilbert's belief

Whereas: Since the axioms of PA are algorithmically computable as true under the finitary interpretation **B**. 13

They validate Hilbert's belief, if we take this to mean that:

Hilbert

- A finitary justification
- Of the PA Axiom Schema of Finite Induction
- Is possible
- Under some finitary interpretation of PA.

¹³ As detailed in Theorem 8

That concludes this overview of the arguments for

Why Hilbert's and Brouwer's interpretations of quantification
ought to be viewed
as complementary and not contradictory

Thank you