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1. Introduction

We shall speculate that the issue of whether, or not, there is a universal logic capable of admitting
effective, and unambiguous, communication with an extra-terrestrial intelligence is intimately linked
with the question of whether Aristotle’s logic of predicates can be validly applied to infinite domains.
This issue lies at the heart of the ‘constructivity’ debate that seeks to distinguish the computer
sciences from other mathematical disciplines.

In this investigation, we have chosen to address the question from the perspective of seekers of extra-
terrestrial intelligence who may, conceivably, be faced with a situation where a lay person—whose
financial support is sought for SETI—may reasonably require a reassuring response to the question:

Query 1. Is there a rational danger to humankind in actively seeking an extra-terrestrial intelligence?

The broader significance of this question was addressed in an article written in September 2006
by scientist David Brin, who feared that ‘. . . SETI has Taken a Worrisome Turn Into Dangerous
Territory’, and noted that:

. . . In The Third Chimpanzee, Jared Diamond offers an essay on the risks of attempting to
contact ETIs, based on the history of what happened on Earth whenever more advanced
civilizations encountered less advanced ones . . . or indeed, when the same thing happens
during contact between species that evolved in differing ecosystems. The results are often
not good: in inter-human relations slavery, colonialism, etc. Among contacting species:
extinction.

We shall restrict ourselves to considering only one aspect of this complex issue:

Query 2. Is fear of actively seeking an ETI merely paranoia, or does it have a rational component?

1.A. Is it rational to fear communicating with an extra-terrestrial intelligence?

Shorn of paranoiac overtones, this fear can be expressed as the query:

Query 3. Can we responsibly seek communication with an extra-terrestrial intelligence actively (as
in the 1974 Aricebo message) or is there a logically sound possibility that we may be initiating a
process which could imperil humankind at a future date?

To place the issue in a debatable perspective, we need to make some reasonable assumptions. For
instance, we may reasonably assume that:

Premise 1. Any communication with an extra-terrestrial intelligence will involve periods of upto
thousands of years between the sending of a message and receipt of a response.

Premise 2. We can only communicate with an essentially different form of extra-terrestrial intelli-
gence in a platform-independent language of a mechanistically reasoning artificial intelligence.

Premise 3. Nature is not malicious and so, for an ETI to be malevolent towards us, they must
perceive us as an essentially different form of intelligence that threatens their survival merely on the
basis of our communications.

http://lifeboat.com/ex/shouting.at.the.cosmos
http://lifeboat.com/ex/shouting.at.the.cosmos
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1.B. Recursive Arithmetic: The language of algorithms

Now, it is reasonable to assume that:

Premise 4. The language of algorithmically computable functions and relations is platform-independent.

This is the algorithm-based machine-language defined by Gödel’s recursive arithmetic ([Go31]), by
Church’s lambda calculus ([Ch36]), by Turing’s computing machines ([Tu36]), and by Markov’s theory
of algorithms ([Ma54]).

As Mandelbrot has shown ([Mn77]), the language appears sufficiently rich to model a number of com-
plex natural phenomena observed by us ([Ba88], [BPS88], [PR86]), which earlier appeared intractable.

To simplify the issue within reason, we may thus assume that:

Premise 5. All natural phenomena which are observable by human intelligence, and which can be
modelled by algorithms, are interpretable isomorphically by an extra-terrestrial intelligence.

However, it is also reasonable to assume that:

Premise 6. There are innumerable, distinctly different, observable natural phenomena.

In other words, the language of algorithms must admit—and require—denumerable primitive symbols
for expressing natural phenomena.

Now, an extra-terrestrial intelligence which observes natural phenomena under an interpretation
that—although structurally isomorphic to ours—uses different means of observation, may not be able
to recognise any of our symbolisms effectively. Hence:

Premise 7. A language of algorithms with a denumerable alphabet does not admit effective commu-
nication with an ETI.

1.C. First-order Peano Arithmetic PA: A universal language of Arithmetic

Now, in a remarkable paper in 1931, Kurt Gödel showed that ([Go31], Theorem VII):

Lemma 1.1. Every algorithm can be formally expressed by some formula of a first-order Peano
Arithmetic, PA.

PA is the language defined over the structure N of the natural numbers—namely, {N (the set of
natural numbers); = (equality); ′ (the successor function); + (the addition function); ∗ (the product
function); 0 (the null element)}.
The axioms and rules of inference of PA are:

PA1: [(x1 = x2)→ ((x1 = x3)→ (x2 = x3))];
PA2: [(x1 = x2)→ (x′1 = x′2)];
PA3: [0 6= x′1];
PA4: [(x′1 = x′2)→ (x1 = x2)];
PA5: [(x1 + 0) = x1];
PA6: [(x1 + x′2) = (x1 + x2)′];
PA7: [(x1 ? 0) = 0];
PA8: [(x1 ? x

′
2) = ((x1 ? x2) + x1)];

PA9: For any well-formed formula [F (x)] of PA:
[(F (0)→ (∀x)(F (x)→ F (x′)))→ (∀x)F (x)].

Modus Ponens in PA: If [A] and [A→ B] are PA-provable, then so is [B];

Generalisation in PA: If [A] is PA-provable, then so is [(∀x)A].
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PA is a good candidate for a language of universal communication with an ETI because—as Turing
showed in 1936—it can be expressed digitally, and—as Gödel showed in his 1931 paper—Peano
Arithmetic has a finite alphabet with finitary rules for:

(i) the formation of well-formed formulas;
(ii) deciding whether a given formula is a well-formed formula;
(iii) deciding whether a given formula is an axiom;
(iv) deciding whether a finite sequence of formulas is a valid deduction/proof sequence;
(v) deciding whether a formula is a consequence of the axioms (a theorem).

1.D. Communicating PA and its Theorems

Since PA can be expressed and beamed digitally, we may reasonably assume that:

Premise 8. Any advanced ETI can communicate with us by recognising that the signals we are beam-
ing:

(a) are not random;
(b) contain a primer that defines PA;
(c) contain theorems that describe common natural phenomena as observed by us.

Carl Sagan obliquely suggested such a strategy in his novel, ‘Contact’ ([Sa85]). Whether, and how, it
can be implemented—as suggested above—is an issue beyond the scope of the limited point sought
to be addressed in this paper.

1.E. How we currently interpret PA

Currently, our standard interpretation IPA(Standard/Tarski) of PA is the one over the structure N ,
where the logical constants have their ‘usual’ interpretations in Aristotle’s logic of predicates, and:

(a) the set of non-negative integers is the domain;
(b) the integer 0 is the interpretation of the symbol [0];
(c) the successor operation (addition of 1) is the interpretation of the [′] function;
(d) ordinary addition and multiplication are the interpretations of [+] and [∗];
(e) the interpretation of the predicate letter [=] is the identity relation.

1.F. A malevolent ETI must interpret some of our true arithmetical propositions
as false

Now, it is reasonable to assume that:

Premise 9. A malevolent ETI could perceive us as an essentially different form of intelligence that
threatens their survival if they have an interpretation of PA that is essentially different to our standard
interpretation IPA(Standard/Tarski) of PA.

Premise 10. An ETI would perceive their interpretation IPA(Non−Standard/ET ) of PA as essentially
different to our standard interpretation IPA(Standard/Tarski) of PA if, and only if, there is a PA formula
which either interprets as false under IPA(Non−Standard/ET ) and true under IPA(Standard/Tarski), or
as as true under IPA(Non−Standard/ET ) and false under IPA(Standard/Tarski).
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1.G. The rational argument for not seeking an ETI pro-actively

In 1931 Gödel detailed an argument from which he concluded that:

� There is an ‘undecidable’ proposition in Peano Arithmetic;

� Two intelligences can logically interpret it and arrive at conflicting conclusions.

Since our current understanding of classical logic admits Gödel’s conclusions, it can be argued that
we must—on the basis of our experiences with conflicting belief-driven perspectives between different
faiths and cultures on earth—be prepared—both politically and militarily—for the, admittedly far-
fetched, possibility that an ETI may:

� Interpret Gödel’s formally ‘undecidable’ proposition as false;

� Believe that any intelligence which interprets the proposition as true (as we do) could be a
potential threat to it—hence one that must be exterminated!

1.H. Does PA lend itself to essentially different interpretations?

So, the question is: Does PA lend itself to essentially different interpretations?

This question of whether there is a PA formula which can interpret as false under a non-standard inter-
pretation IPA(Non−Standard/Tarski) of PA, but true under our standard interpretation IPA(Standard/Tarski),
is—almost universally—believed to have been settled in the affirmative by Gödel in his seminal 1931
paper on formally ‘undecidable’ arithmetical propositions.

In the rest of this paper we shall show that—and why—this belief is misleading, and that we need
to read the fine print of Gödels paper carefully to see why this belief is founded on an untenable
assumption whose roots lie in the unjustified extrapolation of Aristotle’s particularisation to infinite
domains.

We shall conclude that:

Premise 11. Any extra-terrestrial intelligence which is capable of learning the language PA will
interpret the satisfaction, and truth, of the formulas of PA—under a well-defined interpretation of
PA—precisely as we do; it would not rationally perceive us as being an essentially different form of
intelligence that would necessarily be inimical to their interests and/or survival.

2. A Post-Computationalist Evidence-Based Arithmetical Perspec-
tive on the Forcing of Non-Standard Models onto PA

Once we accept as logically sound the set-theoretically based meta-argument1 that the first-order
Peano Arithmetic PA2 can be forced—by an ante-computationalist interpretation of the Compact-
ness Theorem—into admitting non-standard models which contain an ‘infinite’ integer, then the
set-theoretical properties3 of the algebraic and arithmetical structures of such putative models should
perhaps follow without serious foundational reservation.

1By which we mean arguments such as in [Ka91] (see pg.1), where the meta-theory is taken to be a set-theory such
as ZF or ZFC, and the logical consistency of the meta-theory is not considered relevant to the argumentation.

2For purposes of this investigation we may take this to be a first order theory such as the theory S defined in [Me64],
pp.102-103.

3eg. [Ka91]; [Bo00]; [BBJ03], ch.25, p.302; [Ko06]; [Ka11].
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Compactness Theorem: If every finite subset of a set of sentences has a model, then the whole set has a
model4.

We note that, even from a post-computationalist evidence-based arithmetical perspective5 anchored
strictly within the framework of classical logic6, we can conclude incontrovertibly by the Compactness
Theorem that if Th(N) is the LA-theory of the standard model of Arithmetic (i.e., Th(N) is the collec-
tion of all true LA-sentences)7, then we may consistently add to it the following as an additional—not
necessarily independent—axiom:

(∃y)(y > x).

However, we shall argue that even though (∃y)(y > x) is algorithmically computable (Definition 2)
as always true in the standard model—whence all of its instances are in Th(N)—we cannot conclude8

by the Compactness Theorem that ∪k∈N{Th(N)∪ {c > n | n < k}} is consistent and has a model Mc

which contains an ‘infinite’ integer.

Reason: We shall argue that the condition ‘k ∈ N’ in the above definition of ‘∪k∈N{Th(N) ∪ {c >
n | n < k}}’ requires, first of all, that we must be able to extend Th(N) by the addition of a ‘relativised’
axiom9, such as:

(∃y)((x ∈ N)→ (y > x)).

Only then may we conclude that if a model Mc of {Th(N)∪ (∃y)((x ∈ N)→ (y > x))} exists, then it
must have an ‘infinite’ integer c such that:

Mc |= c > n

for all n ∈ N.

However, we shall then argue that even this would not yield a model for Th(N), since every model of
Th(N) is by definition a model of (the provable formulas of) PA, and we shall show that we cannot
introduce a ‘completed’ infinity such as N into either PA or any model of PA!

2.A. A post-computationalist doctrine

More generally we shall argue that, if our interest is in the arithmetical properties of models of PA,
then we first need to make explicit any appeal to non-constructive considerations such as Aristotle’s
particularisation (Definition 3).

We shall then argue that, even from a classical perspective, there are serious foundational, post-
computationalist, reservations to accepting that a consistent PA can be forced by the Compactness
Theorem into admitting non-standard models which contain elements other than the natural numbers.

Reason: Any arithmetical application of the Compactness Theorem to PA can neither ignore cur-
rently accepted post-computationalist doctrines of objectivity—nor contradict the evidence-based
assignments of satisfaction and truth to the atomic formulas of PA (therefore to the compound for-
mulas under Tarski’s inductive definitions) in terms of either algorithmical verifiability or algorithmic
computability10—as expressed, for instance, by the following:

Post-computationalist doctrine

4[BBJ03]. p.147.
5As introduced in [An12]; see also [An16].
6By ‘classical logic’ we mean the standard first-order predicate calculus FOL where the Law of the Excluded Middle

is a theorem, but we do not assume that FOL is ω-consistent; i.e., we do not assume that Aristotle’s particularisation
(Definition 3) must hold under any interpretation of the logic, as is the case for Hilbert’s ε-calculus (see [An15]).

7[Ka91], p.10-11.
8As argued in [Ka91], p.10-11.
9cf. [Fe92]; [Me64], p.192.

10As introduced in [An12], §3; see also [An16].
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“It is by now folklore . . . that one can view the values of a simple functional language as
specifying evidence for propositions in a constructive logic . . . ”11.

The significance of this doctrine12 is that it helps highlight how the algorithmically verifiable (Defi-
nition 1) formulas of PA define the classical non-finitary standard interpretation of PA over N13 (to
which standard arguments for the existence of non-standard models of PA critically appeal).

Accordingly, we shall show that standard arguments which appeal to the ante-computationalist in-
terpretation of the Compactness Theorem—for forcing non-standard models of PA14 which contain
an ‘infinite’ integer—cannot admit constructive assignments of satisfaction and truth15 (in terms of
algorithmical verifiability) to the atomic formulas of their putative extension of PA.

We shall conclude that such arguments therefore questionably postulate by axiomatic fiat that which
they seek to ‘prove’ !

2.B. Standard arguments for non-standard models of PA

In this limited investigation we shall consider only the following three standard arguments for the
existence of non-standard models of the first-order Peano Arithmetic PA:

(i) If PA is consistent, then we obtain a non-standard model for PA which contains an
‘infinite’ integer by applying the Compactness Theorem to the union of the set of formulas
that are satisfied or true in the classical ‘standard’ model of PA16 and the countable set
of all PA-formulas of the form [cn = S(cn+1)].

(ii) If PA is consistent, then we obtain a non-standard model for PA which contains an ‘in-
finite’ integer by adding a constant c to the language of PA and applying the Compactness
Theorem to the theory P∪{c > n : n = 0, 1, 2, . . .}.

(iii) If PA is consistent, then we obtain a non-standard model for PA which contains
an ‘infinite’ integer by adding the PA formula [¬(∀x)R(x)] as an axiom to PA, where
[(∀x)R(x)] is a Gödelian formula17 that is unprovable in PA, even though [R(n)] is provable
in PA for any given PA numeral [n]18.

We shall first argue that (i) and (ii)—which appeal to Thoraf Skolem’s ante-computationalist rea-
soning19 for the existence of a non-standard model of PA—should be treated as foundationally fragile
from a finitary, post-computationalist perspective within classical logic20.

11cf. [Mu91].
12Some of the—hitherto unsuspected—consequences of this doctrine are detailed in [An16].
13[An12], Corollary 2; ‘non-finitary’ because even though the Axiom Schema of Finite Induction interprets as true

under the standard interpretation of PA over N with respect to ‘truth’ as defined by the algorithmically verifiable
formulas of PA, the compound formulas of PA are not decidable finitarily under the standard interpretation of PA over
N with respect to algorithmically verifiable ‘satisfaction’ and ‘truth’; see also [An16].

14eg., [BBJ03], p.155, Lemma 13.3 (Model existence lemma).
15cf. The standard non-constructive set-theoretical assignment-by-postulation (S5) of the satisfaction properties

(S1) to (S8) in [BBJ03], p.153, Lemma 13.1 (Satisfaction properties lemma), which appeals critically to Aristotle’s
particularisation.

16For purposes of this investigation we may take this to be an interpretation of PA as defined in [Me64], p.107.
17In his seminal 1931 paper [Go31], Kurt Gödel defines, and refers to, the formula corresponding to [R(x)] only by its

‘Gödel’ number r (op. cit., p.25, Eqn.(12)), and to the formula corresponding to [(∀x)R(x)] only by its ‘Gödel’ number
17 Gen r.

18[Go31], p.25(1).
19In [Sk34].
20By ‘classical logic’ we mean the standard first-order predicate calculus FOL where we neither deny the Law of the

Excluded Middle, nor assume that the FOL is ω-consistent (i.e., we do not assume that Aristotle’s particularisation
must hold under any interpretation of the logic).
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We shall then argue that although (iii)—which appeals to Kurt Gödel’s (also ante-computationalist)
reasoning21 for the existence of a non-standard model of PA—does yield a model other than the
classical ‘standard’ model of PA, we cannot conclude by even classical (albeit post-computationalist)
reasoning that the domain is other than the domain N of the natural numbers unless we make the
non-constructive—and logically fragile—extraneous assumption that a consistent PA is necessarily
ω-consistent.

(ω-consistency): A formal system S is ω-consistent if, and only if, there is no S-formula [F (x)] for which,
first, [¬(∀x)F (x)] is S-provable and, second, [F (a)] is S-provable for any given S-term [a].

3. Algorithmically verifiable formulas and algorithmically computable
formulas

We begin by distinguishing between:

Definition 1. An atomic formula [F (x)]22 of PA is algorithmically verifiable under an interpretation
if, and only if, for any given numeral [n], there is an algorithm AL(F, n) which can provide objec-
tive evidence23 for deciding the truth value of each formula in the finite sequence of PA formulas
{[F (1)], [F (2)], . . . , [F (n)]} under the interpretation.

The concept is well-defined in the sense that the ‘algorithmic verifiability’ of the formulas of a formal
language which contain logical constants can be—albeit non-finitarily—defined under an interpre-
tation in terms of the ‘algorithmic verifiability’ of the interpretations of the atomic formulas of the
language24.

However it can be shown that25, under such an interpretation, the PA axioms are algorithmically
verifiable as always true over N , and that the PA rules of inference preserve algorithmically verifiable
truth over N .

We note further that the formulas of the first order Peano Arithmetic PA are decidable under the
standard interpretation of PA over the domain N of the natural numbers if, and only if, they are
algorithmically verifiable under the interpretation.

Definition 2. An atomic formula [F (x)] of PA is algorithmically computable under an interpretation
if, and only if, there is an algorithm ALF that can provide objective evidence for deciding the truth
value of each formula in the denumerable sequence of PA formulas {[F (1)], [F (2)], . . .} under the
interpretation.

This concept too is well-defined in the sense that the ‘algorithmic computability’ of the formulas of
a formal language which contain logical constants can be—in this case finitarily—defined under an
interpretation in terms of the ‘algorithmic computability’ of the interpretations of the atomic formulas
of the language26.

Moreover, it can be now shown that27, under such an interpretation, the PA axioms are algorithmi-
cally computable as always true over N , and that the PA rules of inference preserve algorithmically
computable truth over N .

21In [Go31].
22Notation: For the sake of convenience, we shall use square brackets to indicate that the expression enclosed by them

is to be treated as denoting a formula of a formal theory, and not as denoting an interpretation.
23[Mu91].
24[An12]; see also [An16].
25A straightforward consequence of the evidence-based reasoning in [An12], by arguments paralleling those of Theorem

4; see also [An16].
26[An12]; see also [An16].
27Theorem 4 in [An12]; see also [An16].



B. S. Anand, Is there a rational danger to humankind in actively seeking an extra-terrestrial intelligence? 9B. S. Anand, Is there a rational danger to humankind in actively seeking an extra-terrestrial intelligence? 9

Although we shall not appeal to the following in this paper, we note in passing that the foundational
significance of the distinction between algorithmic verifiability and algorithmic computability for any
theory of the real numbers (and of their extension) that has classically sought to be built upon the
foundations of an arithmetic such as the first-order arithmetic PA28 lies in the argument that:

Lemma 3.1. There are algorithmically verifiable number theoretical functions which are not algo-
rithmically computable.29

Proof: If we accept as classically incontrovertible the definition of a real number R in the interval 0 <
R ≤ 1 as the limit Ltn→∞

∑n
i=1 r(i).2

−i of the Cauchy sequence {
∑n

i=1 r(i).2
−i} of rationals, then r(n)

is an algorithmically verifiable number-theoretic function. Since every algorithmically computable real
is countable30, Cantor’s diagonal argument31 and Turing’s Halting argument32 together show that
there are real numbers that are algorithmically verifiable but not algorithmically computable. The
Lemma follows. �

4. Making non-finitary assumptions explicit

We next make explicit—and briefly review—a tacitly held fundamental tenet of classical logic which
is unrestrictedly adopted as intuitively obvious by standard literature33 that seeks to build upon the
formal first-order predicate calculus FOL:

Definition 3. Aristotle’s particularisation This holds that from an assertion such as:

‘It is not the case that: For any given x, P ∗(x) does not hold’,

usually denoted symbolically by ‘¬(∀x)¬P ∗(x)’, we may always validly infer in the classical, Aris-
totlean, logic of predicates34 that:

‘There exists an unspecified x such that P ∗(x) holds’,

usually denoted symbolically by ‘(∃x)P ∗(x)’.

4.A. The significance of Aristotle’s particularisation for the first-order predicate
calculus

Now we note that in a formal language the formula ‘[(∃x)P (x)]’ is an abbreviation for the formula
‘[¬(∀x)¬P (x)]’; and that the commonly accepted interpretation of this formula tacitly appeals to
Aristotlean particularisation.

28Such as, for instance, in Hardy’s classic text [Ha60]; see also Edmund Landau’s slim, but as charming as it is
classically rigorous, text [La29].

29We note that algorithmic computability implies the existence of an algorithm that can decide the truth/falsity of
each proposition in a well-defined denumerable sequence of propositions, whereas algorithmic verifiability does not imply
the existence of an algorithm that can decide the truth/falsity of each proposition in a well-defined denumerable sequence
of propositions. From the point of view of a finitary mathematical philosophy, the significant difference between the
two concepts could be expressed ([An13]; see also [An15a]) by saying that we may treat the decimal representation of
a real number as corresponding to a physically measurable limit—and not only to a mathematically definable limit—if
and only if such representation is definable by an algorithmically computable function.

30[Tu36].
31[Kl52], pp.6-8.
32[Tu36].
33See [Hi25], p.382; [HA28], p.48; [Sk28], p.515; [Go31], p.32.; [Kl52], p.169; [Ro53], p.90; [BF58], p.46; [Be59], pp.178

& 218; [Su60], p.3; [Wa63], p.314-315; [Qu63], pp.12-13; [Kn63], p.60; [Co66], p.4; [Me64], pp.45, 47, 52(ii), 214(fn);
[Nv64], p.92; [Li64], p.33; [Sh67], p.13; [Da82], p.xxv; [Rg87], p.xvii; [EC89], p.174; [Mu91]; [Sm92], p.18, Ex.3; [BBJ03],
p.102.

34[HA28], pp.58-59.
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However, as L. E. J. Brouwer had noted in his seminal 1908 paper on the unreliability of logical
principles35, the commonly accepted interpretation of this formula is ambiguous if interpretation is
intended over an infinite domain.

Brouwer essentially argued that, even supposing the formula ‘[P (x)]’ of a formal Arithmetical language
interprets as an arithmetical relation denoted by ‘P ∗(x)’, and the formula ‘[¬(∀x)¬P (x)]’ as the
arithmetical proposition denoted by ‘¬(∀x)¬P ∗(x)’, the formula ‘[(∃x)P (x)]’ need not interpret as
the arithmetical proposition denoted by the usual abbreviation ‘(∃x)P ∗(x)’; and that such postulation
is invalid as a general logical principle in the absence of a means for constructing some putative object
a for which the proposition P ∗(a) holds in the domain of the interpretation.

Hence we shall follow the convention that the assumption that ‘(∃x)P ∗(x)’ is the intended interpreta-
tion of the formula ‘[(∃x)P (x)]’—which is essentially the assumption that Aristotle’s particularisation
holds over the domain of the interpretation—must always be explicit.

4.B. The significance of Aristotle’s particularisation for PA

In order to avoid intuitionistic objections to his reasoning, Kurt Gödel introduced the syntactic
property of ω-consistency36 as an explicit assumption in his formal reasoning in his seminal 1931
paper on formally undecidable arithmetical propositions37.

Gödel explained at some length38 that his reasons for introducing ω-consistency explicitly was to
avoid appealing to the semantic concept of classical arithmetical truth in Aristotle’s logic of predicates
(which presumes Aristotle’s particularisation).

The two concepts are meta-mathematically equivalent in the sense that, if PA is consistent, then PA
is ω-consistent if, and only if, Aristotle’s particularisation holds under the standard interpretation of
PA39.

5. The ambiguity in admitting an ‘infinite’ constant

We begin our consideration of standard arguments for the existence of non-standard models of PA
which contain an ‘infinite’ integer by first highlighting and eliminating an ambiguity in the argument
as it is usually found in standard texts40:

“Corollary. There is a non-standard model of P with domain the natural numbers in
which the denotation of every nonlogical symbol is an arithmetical relation or function.

Proof. As in the proof of the existence of nonstandard models of arithmetic, add a constant
∞ to the language of arithmetic and apply the Compactness Theorem to the theory

P∪{∞ 6= n: n = 0, 1, 2, . . .}

to conclude that it has a model (necessarily infinite, since all models of P are). The
denotations of ∞ in any such model will be a non-standard element, guaranteeing that
the model is non-standard. Then apply the arithmetical Löwenheim-Skolem theorem to
conclude that the model may be taken to have domain the natural numbers, and the
denotations of all nonlogical symbols arithmetical.”

35[Br08].
36The significance of ω-consistency for the formal system PA is highlighted in[An12]; see also [An16].
37[Go31], p.23 and p.28.
38In his introduction on p.9 of [Go31].
39For details see [An12]; see also [An16].
40cf. [HP98], p.13, §0.29; [Me64], p.112, Ex. 2.
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. . . [BBJ03], p.306, Corollary 25.3.

5.A. We cannot force PA to admit a transfinite ordinal

The ambiguity lies in a possible interpretation of the symbol ∞ as a ‘completed’ infinity (such as
Cantor’s first transfinite ordinal ω) in the context of non-standard models of PA. To eliminate this
possibility we establish trivially that, and briefly examine why:

Theorem 5.1. No model of PA can admit a transfinite ordinal under the standard interpretation of
the classical logic FOL41.

Proof Let [G(x)] denote the PA-formula:

[x = 0 ∨ ¬(∀y)¬(x = Sy)]

Since Aristotle’s particularisation is tacitly assumed under the standard interpretation of FOL, this
translates in every model of PA, as:

If x denotes an element in the domain of a model of PA, then either x is 0, or x is a
‘successor’.

Further, in every model of PA, if G(x) denotes the interpretation of [G(x)]:

(a) G(0) is true;

(b) If G(x) is true, then G(Sx) is true.

Hence, by Gödel’s completeness theorem:

(c) PA proves [G(0)];

(d) PA proves [G(x)→ G(Sx)].

Gödel’s Completeness Theorem: In any first-order predicate calculus, the theorems are pre-
cisely the logically valid well-formed formulas (i. e. those that are true in every model of the
calculus).

Further, by Generalisation:

(e) PA proves [(∀x)(G(x)→ G(Sx))];

Generalisation in PA: [(∀x)A] follows from [A].

Hence, by Induction:

(f) [(∀x)G(x)] is provable in PA.

Induction Axiom Schema of PA: For any formula [F (x)] of PA:

[F (0) → ((∀x)(F (x) → F (Sx)) → (∀x)F (x))]

In other words, except 0, every element in the domain of any model of PA is a ‘successor’. Further,
the standard PA axioms ensure that x can only be a ‘successor’ of a unique element in any model of
PA.

Since Cantor’s first limit ordinal ω is not the ‘successor’ of any ordinal in the sense required by the
PA axioms, and since there are no infinitely descending sequences of ordinals42 in a model—if any—of
a first order set theory such as ZF, the theorem follows. �

41For purposes of this investigation we may take this to be the first order predicate calculus K as defined in [Me64],
p.57.

42cf. [Me64], p.261.
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5.B. Why we cannot force PA to admit a transfinite ordinal

Theorem 5.1 reflects the fact that we can define the usual order relation ‘<’ in PA so that every
instance of the PA Axiom Schema of Finite Induction, such as, say:

(i) [F (0)→ ((∀x)(F (x)→ F (Sx))→ (∀x)F (x))]

yields the weaker PA theorem:

(ii) [F (0)→ ((∀x)((∀y)(y < x→ F (y))→ F (x))→ (∀x)F (x))]

Now, if we interpret PA without relativisation in ZF43— i.e., numerals as finite ordinals, [Sx] as
[x ∪ {x}], etc.— then (ii) always translates in ZF as a theorem:

(iii) [F (0)→ ((∀x)((∀y)(y ∈ x→ F (y))→ F (x))→ (∀x)F (x))]

However, (i) does not always translate similarly as a ZF-theorem, since the following is not necessarily
provable in ZF:

(iv) [F (0)→ ((∀x)(F (x)→ F (x ∪ {x}))→ (∀x)F (x))]

Example: Define [F (x)] as ‘[x ∈ ω]’.

We conclude that, whereas the language of ZF admits as a constant the first limit ordinal ω which
would interpret in any putative model of ZF as the (‘completed’ infinite) set ω of all finite ordinals:

Corollary 5.2. The language of PA admits of no constant that interprets in any model of PA as the
set N of all natural numbers.

We note that it is the non-logical Axiom Schema of Finite Induction of PA which does not allow us
to introduce—contrary to what is suggested by standard texts44—an ‘actual’ (or ‘completed’ ) infinity
disguised as an arbitrary constant (usually denoted by c or∞) into either the language, or a putative
model, of PA45.

6. Forcing PA to admit denumerable descending dense sequences

The significance of Theorem 5.1 is seen in the next two arguments, which attempt to implicitly bypass
the Theorem’s constraint by appeal to the Compactness Theorem for forcing a non-standard model
onto PA46.

However, we argue in both cases that applying the Compactness Theorem constructively—even from
a classical perspective—does not logically yield a non-standard model for PA with an ‘infinite’ integer
as claimed47.

43In the sense indicated by Feferman [Fe92].
44eg. [HP98], p.13, §0.29; [Ka91], p.11 & p.12, fig.1; [BBJ03]. p.306, Corollary 25.3; [Me64], p.112, Ex. 2.
45A possible reason why the Axiom Schema of Finite Induction does not admit non-finitary reasoning into either PA,

or into any model of PA, is suggested in §7.A. below.
46eg. [Ln08]; [Ka91], pp.10-11, p.74 & p.75, Theorem 6.4.
47And as suggested also by standard texts in such cases; eg. [BBJ03]. p.306, Corollary 25.3; [Me64], p.112, Ex. 2.
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6.A. An argument for a non-standard model of PA

The first is the argument48 that we can define a non-standard model of PA with an infinite descending
chain of successors, where the only non-successor is the null element 0:

1. Let <N (the set of natural numbers); = (equality); S (the successor fun-
ction); + (the addition function); ∗ (the product function); 0 (the null
element)> be the structure that serves to define a model of PA, say N .

2. Let T[N ] be the set of PA-formulas that are satisfied or true in N .

3. The PA-provable formulas form a subset of T[N ].

4. Let Γ be the countable set of all PA-formulas of the form [cn = Scn+1],
where the index n is a natural number.

5. Let T be the union of Γ and T[N ].

6. T[N ] plus any finite set of members of Γ has a model, e.g., N itself,
since N is a model of any finite descending chain of successors.

7. Consequently, by Compactness, T has a model; call it M .

8. M has an infinite descending sequence with respect to S because it is a
model of Γ.

9. Since PA is a subset of T, M is a non-standard model of PA.

6.A.a. Why the argument in §6.A. is logically fragile

However if—as claimed in §6.A.(6) above—N is a model of T[N ] plus any finite set of members of Γ,
and the PA term [cn] is well-defined for any given natural number n, then:

� All PA-formulas of the form [cn = Scn+1] are PA-provable,

� Γ is a proper sub-set of the PA-provable formulas, and

� T is identically T[N ].

Reason: The argument cannot be that some PA-formula of the form [cn = Scn+1] is true in N , but
not PA-provable, as this would imply that if PA is consistent then PA+[¬(cn = Scn+1)] has a model
other than N ; in other words, it would presume that which is sought to be proved, namely that PA
has a non-standard model49!

Consequently, the postulated model M of T in §6.A.(7) by ‘Compactness’ is the model N that defines
T[N ]. However, N has no infinite descending sequence with respect to S, even though it is a model
of Γ.

48[Ln08].
49To place this distinction in perspective, Adrien-Marie Legendre and Carl Friedrich Gauss independently conjectured

in 1796 that, if π(x) denotes the number of primes less than x, then π(x) is asymptotically equivalent to x/In(x). Between
1848/1850, Pafnuty Lvovich Chebyshev confirmed that if π(x)/{x/In(x)} has a limit, then it must be 1. However, the
crucial question of whether π(x)/{x/In(x)} has a limit at all was answered in the affirmative using analytic methods
independently by Jacques Hadamard and Charles Jean de la Vallée Poussin only in 1896, and using only elementary
methods by Atle Selberg and Paul Erdös in 1949.
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Hence the argument does not establish the existence of a non-standard model of PA with an infinite
descending sequence with respect to the successor function S.

6.B. A formal argument for a non-standard model of PA

The second is the more formal argument50:

“Let Th(N) denote the complete LA-theory of the standard model, i.e. Th(N) is the
collection of all true LA-sentences. For each n ∈ N we let n be the closed term (. . . (((1 +
1) + 1) + . . . + 1)))(n 1s) of LA; 0 is just the constant symbol 0. We now expand our
language LA by adding to it a new constant symbol c, obtaining the new language Lc,
and consider the following Lc-theory with axioms

ρ (for each ρ ∈ Th(N))

and

c > n (for each n ∈ N)

This theory is consistent, for each finite fragment of it is contained in

Tk = Th(N) ∪ {c > n | n < k}

for some k ∈ N, and clearly the Lc-structure (N, k) with domain N, 0, 1, +, · and
< interpreted naturally, and c interpreted by the integer k, satisfies Tk. Thus by the
compactness theorem ∪k∈NTk is consistent and has a model Mc. The first thing to note
about Mc is that

Mc |= c > n

for all n ∈ N, and hence it contains an ‘infinite’ integer.”

6.B.a. Why the argument in §6.B. too is logically fragile

We note again that, from an arithmetical perspective, any application of the Compactness Theorem
to PA cannot ignore currently accepted computationalist doctrines of objectivity51 and contradict
the constructive assignment of satisfaction and truth to the atomic formulas of PA (therefore to the
compound formulas under Tarski’s inductive definitions) in terms of either algorithmical verifiability
or algorithmic computability52.

Accordingly, from an arithmetical perspective we can only conclude by the Compactness Theorem
that if Th(N) is the LA-theory of the standard model (interpretation), then we may consistently add
to it the following as an additional—not necessarily independent—axiom:

(∃y)(y > x).

Moreover, even though (∃y)(y > x) is algorithmically computable as always true in the standard
model—whence all instances of it are also therefore in Th(N)—we cannot conclude by the Compact-
ness Theorem that ∪k∈NTk is consistent and has a model Mc which contains an ‘infinite’ integer.

Reason: The condition ‘k ∈ N’ in ∪k∈NTk requires, first of all, that we must be able to extend Th(N)
by the addition of a ‘relativised’ axiom53 such as:

50[Ka91], pp.10-11; attributed as essentially Skolem’s argument in [Sk34].
51cf. [Mu91].
52[An12], §3; see also [An16].
53cf. [Fe92]; [Me64], p.192.
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(∃y)((x ∈ N)→ (y > x)),

from which we may conclude the existence of some c such that:

Mc |= c > n

for all n ∈ N.

However, we shall then argue that even this would not yield a model for Th(N), since every model
of Th(N) is by definition a model of (the provable formulas of) PA and, by Theorem 5.1, we cannot
introduce a ‘completed’ infinity such as N into into either PA or any model of PA!

As the argument stands, it seeks to violate finitarity by adding a new constant c to the language LA
of PA that is not definable in LA and, ipso facto, adding an atomic formula [c = x] to PA whose
satisfaction under any interpretation of PA is not algorithmically verifiable!

Since the atomic formulas of PA are algorithmically verifiable under the standard interpretation54,
the above conclusion too postulates that which it seeks to prove!

Moreover, the postulation would be false if Th(N) were categorical.

Since Th(N) must have a non-standard model if it is not categorical, we consider next whether we
may conclude from Gödel’s incompleteness argument55 that any such model can have an ‘infinite’
integer.

7. Gödel’s argument for a non-standard model of PA

We begin by considering the Gödelian formula [(∀x)R(x)]56 which is unprovable in PA if PA is
consistent, even though the formula [R(n)] is provable in a consistent PA for any given PA numeral
[n].

Now, it follows from Gödel’s reasoning57 that:

Theorem 7.1. If PA is consistent, then we may add the PA formula [¬(∀x)R(x)] as an axiom to
PA without inviting inconsistency.

Theorem 7.2. If PA is ω-consistent, then we may add the PA formula [(∀x)R(x)] as an axiom to
PA without inviting inconsistency.

Gödel concluded from this that:

Corollary 7.3. If PA is ω-consistent, then there are at least two distinctly different models of PA. �

If we assume that a consistent PA is necessarily ω-consistent, then it follows that one of the two
putative models postulated by Corollary 7.3 must contain elements other than the natural numbers.

We conclude that Gödel’s justification for the assumption that non-standard models of PA contain-
ing elements other than the natural numbers are logically feasible lies in his non-constructive—and
logically fragile—assumption that a consistent PA is necessarily ω-consistent.

54[An12], Corollary 2; see also [An16].
55In [Go31].
56In his seminal 1931 paper [Go31], Kurt Gödel defines, and refers to, the formula corresponding to [R(x)] only by its

‘Gödel’ number r (op. cit., p.25, Eqn.(12)), and to the formula corresponding to [(∀x)R(x)] only by its ‘Gödel’ number
17 Gen r.

57[Go31], p.25(1) & p.25(2).



16 7. Gödel’s argument for a non-standard model of PA16 7. Gödel’s argument for a non-standard model of PA

7.A. Why Gödel’s assumption is logically fragile

Now, whereas Gödel’s proof of Corollary 7.3 appeals to the non-constructive Aristotle’s particulari-
sation, a constructive proof of the Corollary follows trivially from evidence-based interpretations of
PA58.

Reason: Tarski’s inductive definitions allow us to provide finitary satisfaction and truth certificates
to all atomic (and ipso facto to all compound) formulas of PA over the domain N of the natural
numbers in two essentially different ways:

(1) In terms of algorithmic verifiabilty59; and

(2) In terms of algorithmic computability60.

That there can be even one, let alone two, logically sound and finitary assignments of satisfaction and
truth certificates to both the atomic and compound formulas of PA was hitherto unsuspected!

Moreover, neither the putative ‘algorithmically verifiable’ model, nor the ‘algorithmically computable’
model, of PA defined by these finitary satisfaction and truth assignments contains elements other than
the natural numbers.

(a) Any algorithmically verifiable model of PA is necessarily over N
For instance if, in the first case, we assume that the algorithmically verifiable atomic formulas of PA
determine an algorithmically verifiable model of PA over the domain N of the PA numerals, then such
a putative model would be isomorphic to the standard model of PA over the domain N of the natural
numbers61.

However, such a putative model of PA over N would not be finitary since, if the formula [(∀x)F (x)]
were to interpret as true in it, then we could only conclude that, for any numeral [n], there is an
algorithm which will finitarily certify the formula [F (n)] as true under an algorithmically verifiable
interpretation in N.

We could not conclude that there is a single algorithm which, for any numeral [n], will finitarily certify
the formula [F (n)] as true under the algorithmically verifiable interpretation in N.

Consequently, even though the PA Axiom Schema of Finite Induction can be shown to interpret as
true under the algorithmically verifiable interpretation of PA over the domain N of the PA numerals,
the interpretation would not define a finitary model of PA.

However, if we were to assume that the algorithmically verifiable interpretation of PA defines a non-
finitary model of PA, then it would follow that:

� PA is necessarily ω-consistent;

� Aristotle’s particularisation holds over N ; and

� The ‘standard’ interpretation of PA also defines a non-finitary model of PA over N .

(b) The algorithmically computable interpretation of PA is over N
The second case is where the algorithmically computable atomic formulas of PA determine an algo-
rithmically computable model of PA over the domain N of the natural numbers62.

58[An12]; see also [An16].
59[An12], §4.2; see also [An16].
60[An12], §4.3; see also [An16].
61[An12], §4.2 & §5, Corollary 2; see also [An16].
62[An12], §4.3 & §5.2; see also [An16].
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The algorithmically computable model of PA is finitary since we can show that, if the formula
[(∀x)F (x)] interprets as true under it, then we may always conclude that there is a single algo-
rithm which, for any numeral [n], will finitarily certify the formula [F (n)] as true in N under the
algorithmically computable interpretation.

Consequently we can show that all the PA axioms—including the Axiom Schema of Finite Induction—
interpret finitarily as true in N under the algorithmically computable interpretation of PA, and the
PA Rules of Inference preserve such truth finitarily63.

Thus the algorithmically computable interpretation of PA defines a finitary model of PA from which
we may conclude that:

� PA is consistent64.

7.B. Why we cannot conclude that PA is necessarily ω-consistent

By the way the above finitary interpretation (b) is defined under Tarski’s inductive definitions65,
if a PA-formula [F ] interprets as true in the corresponding finitary model of PA, then there is an
algorithm that provides a certificate for such truth for [F ] in N ; whilst if [F ] interprets as false in the
above finitary model of PA, then there is no algorithm that can provide such a truth certificate for
[F ] in N66.

Now, if there is no algorithm that can provide such a truth certificate for the Gödelian formula [R(x)]
in N , then we would have by definition first that the PA formula [¬(∀x)R(x)] is true in the model,
and second by Gödel’s reasoning that the formula [R(n)] is true in the model for any given numeral
[n]. Hence Aristotle’s particularisation would not hold in the model.

However, by definition if PA were ω-consistent then Aristotle’s particularisation must necessarily hold
in every model of PA.

It follows that unless we can establish that there is some algorithm which can provide such a truth
certificate for the Gödelian formula [R(x)] in N , we cannot make the unqualified assumption—as
Gödel appears to do—that a consistent PA is necessarily ω-consistent.

8. Conclusion

We have argued that standard arguments for the existence of non-standard models of the first-order
Peano Arithmetic PA with domains other than the domain N of the natural numbers should be treated
as logically fragile even from within classical logic. In particular we have argued that although Gödel’s
argument for the existence of a non-standard model of PA does yield a model of PA other than the
classical non-finitary ‘standard’ model, we cannot conclude from it that the domain is other than the
domain N of the natural numbers.

We conclude that any extra-terrestrial intelligence which is capable of learning the language PA will
interpret the satisfaction, and truth, of the formulas of PA—under a well-defined interpretation of
PA—precisely as we do; it would not rationally perceive us as being an essentially different form of
intelligence that would necessarily be inimical to their interests and/or survival.
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